Friday 16 December 2016

Moving Average Schaltung

Frequenzgang des laufenden Mittelfilters Der Frequenzgang eines LTI-Systems ist die DTFT der Impulsantwort, die Impulsantwort eines L-Sample-gleitenden Mittelwerts Da der gleitende Mittelwert FIR ist, reduziert sich der Frequenzgang auf die endliche Summe We Kann die sehr nützliche Identität verwenden, um den Frequenzgang zu schreiben, wo wir ae minus jomega haben lassen. N 0 und M L minus 1. Wir können an der Größe dieser Funktion interessiert sein, um zu bestimmen, welche Frequenzen durch den Filter ungedämpft werden und welche gedämpft werden. Unten ist ein Diagramm der Größe dieser Funktion für L 4 (rot), 8 (grün) und 16 (blau). Die horizontale Achse reicht von Null bis pi Radiant pro Probe. Man beachte, daß der Frequenzgang in allen drei Fällen eine Tiefpaßcharakteristik aufweist. Eine konstante Komponente (Nullfrequenz) im Eingang durchläuft das Filter ungedämpft. Bestimmte höhere Frequenzen, wie z. B. pi / 2, werden durch das Filter vollständig eliminiert. Wenn es aber die Absicht war, ein Tiefpassfilter zu entwerfen, dann haben wir das nicht sehr gut gemacht. Einige der höheren Frequenzen werden nur um einen Faktor von etwa 1/10 (für den 16-Punkte-gleitenden Durchschnitt) oder 1/3 (für den vier-Punkte-gleitenden Durchschnitt) gedämpft. Wir können viel besser als das. Der oben genannte Plot wurde durch den folgenden Matlab-Code erzeugt: omega 0: pi / 400: pi H4 (1/4) (1-exp (-iomega4)) ./ (1-exp (-Iomega)) H8 (1/8 ) (1-exp (-iomega)) - (1-exp (-iomega)) - Geispiel (Omega , Abs (H4) abs (H8) abs (H16) Achse (0, pi, 0, 1) Copyright-Kopie 2000- Universität von Kalifornien, Berkeley Ich habe im Wesentlichen eine Reihe von Werten wie folgt: Das obige Array ist vereinfacht, Im Sammeln 1 Wert pro Millisekunde in meinem realen Code und ich muss die Ausgabe auf einem Algorithmus, den ich schrieb, um die nächste Peak vor einem Zeitpunkt zu finden verarbeiten. Meine Logik schlägt fehl, weil in meinem Beispiel oben 0.36 die wahre Spitze ist, aber mein Algorithmus würde rückwärts schauen und sehen die sehr letzte Zahl 0.25 als die Spitze, als theres eine Abnahme zu 0.24 vor ihm. Das Ziel ist, diese Werte zu nehmen und einen Algorithmus auf sie, die glätten sie ein wenig, so dass ich mehr lineare Werte. (Dh: Id wie meine Ergebnisse curvy, nicht jaggedy) Ive wurde gesagt, um einen exponentiellen gleitenden durchschnittlichen Filter auf meine Werte anzuwenden. Wie kann ich dies tun Es ist wirklich schwer für mich, mathematische Gleichungen zu lesen, gehe ich viel besser mit Code. Wie verarbeite ich Werte in meinem Array, die Anwendung einer exponentiellen gleitenden Durchschnittsberechnung, um sie herauszufordern, um einen exponentiellen gleitenden Durchschnitt zu berechnen. Müssen Sie einige Zustand zu halten und Sie benötigen einen Tuning-Parameter. Dies erfordert eine kleine Klasse (vorausgesetzt, Sie verwenden Java 5 oder höher): Instantiate mit dem Decay-Parameter, die Sie wollen (kann Abstimmung sollte zwischen 0 und 1) und dann mit Average () zu filtern. Beim Lesen einer Seite auf einige mathematische Rekursion, alles, was Sie wirklich wissen müssen, wenn Sie es in Code ist, dass Mathematiker gerne Indizes in Arrays und Sequenzen mit Indizes schreiben. (Theyve einige andere Anmerkungen außerdem, die nicht helfen.) Jedoch ist die EMA ziemlich einfach, da Sie nur an einen alten Wert erinnern müssen, der keine komplizierten Zustandarrays erfordert. Beantwortet Feb 8 12 at 20:42 TKKocheran: Ziemlich viel. Isn39t es schön, wenn die Dinge einfach sein können (Wenn Sie mit einer neuen Sequenz beginnen, erhalten Sie einen neuen Mittelwert.) Beachten Sie, dass die ersten paar Begriffe in der gemittelten Sequenz um ein bisschen durch Randeffekte springen, aber Sie erhalten diese mit anderen gleitenden Durchschnitten auch. Allerdings ist ein guter Vorteil, dass Sie die gleitende durchschnittliche Logik in die Mittelung einwickeln und experimentieren können, ohne den Rest des Programms zu viel zu stören. Ndash Donal Fellows Ich habe eine harte Zeit, Ihre Fragen zu verstehen, aber ich werde versuchen, trotzdem zu beantworten. 1) Wenn Ihr Algorithmus 0,25 statt 0,36 gefunden hat, dann ist es falsch. Es ist falsch, weil es eine monotone Zunahme oder Abnahme (das ist immer nach oben oder immer nach unten). Wenn Sie ALLE Ihre Daten nicht klassifizieren, sind Ihre Datenpunkte - wie Sie sie darstellen - nichtlinear. Wenn Sie wirklich den maximalen Wert zwischen zwei Zeitpunkten finden wollen, dann schneiden Sie Ihr Array von tmin zu tmax und finden Sie das Maximum dieses Unterarrays. 2) Nun ist das Konzept der gleitenden Durchschnitte sehr einfach: vorstellen, dass ich die folgende Liste haben: 1.4, 1.5, 1.4, 1.5, 1.5. Ich kann es glätten, indem ich den Durchschnitt von zwei Zahlen: 1.45, 1.45, 1.45, 1.5. Beachten Sie, dass die erste Zahl ist der Durchschnitt von 1,5 und 1,4 (zweite und erste Zahlen) die zweite (neue Liste) ist der Durchschnitt von 1,4 und 1,5 (dritte und zweite alte Liste) die dritte (neue Liste) der Durchschnitt von 1,5 und 1,4 (Vierte und dritte), und so weiter. Ich könnte es Zeitraum drei oder vier gemacht haben, oder n. Beachten Sie, wie die Daten viel glatter sind. Ein guter Weg, um zu sehen, gleitende Durchschnitte bei der Arbeit ist, gehen Sie zu Google Finance, wählen Sie eine Aktie (versuchen Tesla Motors ziemlich volatil (TSLA)) und klicken Sie auf Technische Daten am unteren Rand des Diagramms. Wählen Sie Moving Average mit einer bestimmten Periode und Exponential gleitenden Durchschnitt, um ihre Differenzen zu vergleichen. Exponentielle gleitende Durchschnitt ist nur eine weitere Ausarbeitung dieser, aber Gewichte die älteren Daten weniger als die neuen Daten ist dies ein Weg, um die Glättung nach hinten auszugleichen. Bitte lesen Sie den Wikipedia-Eintrag. Also, dies ist eher ein Kommentar als eine Antwort, aber die kleine Kommentar-Box war nur zu klein. Viel Glück. Wenn Sie Probleme mit der Mathematik haben, könnten Sie mit einem einfachen gleitenden Durchschnitt statt exponentiell gehen. Also die Ausgabe erhalten Sie die letzten x-Terme durch x geteilt werden. Ungetestetes Pseudocode: Beachten Sie, dass Sie die Anfangs - und Endteile der Daten behandeln müssen, da deutlich, dass Sie die letzten 5 Ausdrücke nicht durchschnittlich sind, wenn Sie auf Ihrem 2. Datenpunkt sind. Außerdem gibt es effizientere Methoden, diesen gleitenden Durchschnitt (sum sum - älteste neueste) zu berechnen, aber dies ist, um das Konzept von dem, was passiert, zu bekommen. Beantwortet Feb 8 12 at 20:41 Deine Antwort 2016 Stack Exchange, Inc


No comments:

Post a Comment