Wednesday 28 December 2016

Moving Average Saisonalität

Spreadsheet-Implementierung der saisonalen Anpassung und exponentieller Glättung Es ist einfach, saisonale Anpassung durchzuführen und exponentielle Glättungsmodelle mit Excel anzupassen. Die unten aufgeführten Bildschirmbilder und Diagramme werden einer Tabellenkalkulation entnommen, die eine multiplikative saisonale Anpassung und eine lineare Exponentialglättung für die folgenden vierteljährlichen Verkaufsdaten von Outboard Marine darstellt: Um eine Kopie der Tabellenkalkulation selbst zu erhalten, klicken Sie hier. Die Version der linearen exponentiellen Glättung, die hier für Demonstrationszwecke verwendet wird, ist die Brown8217s-Version, nur weil sie mit einer einzigen Spalte von Formeln implementiert werden kann und es nur eine Glättungskonstante gibt, die optimiert werden soll. In der Regel ist es besser, Holt8217s Version, die separate Glättungskonstanten für Ebene und Trend hat. Der Prognoseprozess verläuft wie folgt: (i) Die Daten werden saisonbereinigt (ii) sodann für die saisonbereinigten Daten über lineare exponentielle Glättung Prognosen erstellt und (iii) schließlich werden die saisonbereinigten Prognosen zur Erzielung von Prognosen für die ursprüngliche Serie herangezogen . Der saisonale Anpassungsprozess wird in den Spalten D bis G durchgeführt. Der erste Schritt in der Saisonbereinigung besteht darin, einen zentrierten gleitenden Durchschnitt (hier in Spalte D) zu berechnen. Dies kann erreicht werden, indem der Durchschnitt von zwei einjährigen Durchschnittswerten, die um eine Periode relativ zueinander versetzt sind, genommen wird. (Eine Kombination von zwei Offset-Durchschnittswerten anstatt eines einzigen Mittels wird für die Zentrierung benötigt, wenn die Anzahl der Jahreszeiten gleich ist.) Der nächste Schritt besteht darin, das Verhältnis zum gleitenden Durchschnitt zu berechnen. Wobei die ursprünglichen Daten durch den gleitenden Durchschnitt in jeder Periode dividiert werden, was hier in Spalte E durchgeführt wird. (Dies wird auch Quottrend-Cyclequot-Komponente des Musters genannt, sofern Trend - und Konjunktur-Effekte als all das betrachtet werden können Bleibt nach einer Durchschnittsberechnung über ein ganzes Jahr im Wert von Daten bestehen. Natürlich können die monatlichen Veränderungen, die nicht saisonal bedingt sind, durch viele andere Faktoren bestimmt werden, aber der 12-Monatsdurchschnitt überträgt sie in hohem Maße Wird der geschätzte saisonale Index für jede Jahreszeit berechnet, indem zuerst alle Verhältnisse für die jeweilige Jahreszeit gemittelt werden, was in den Zellen G3-G6 unter Verwendung einer AVERAGEIF-Formel erfolgt. Die Durchschnittsverhältnisse werden dann neu skaliert, so daß sie auf das genau 100-fache der Anzahl der Perioden in einer Jahreszeit, oder 400 in diesem Fall, das in den Zellen H3-H6 erfolgt, summieren. Unten in der Spalte F werden VLOOKUP-Formeln verwendet, um den entsprechenden saisonalen Indexwert in jede Zeile der Datentabelle einzufügen, entsprechend dem Viertel des Jahres, das es repräsentiert. Der zentrierte gleitende Durchschnitt und die saisonbereinigten Daten enden wie folgt: Beachten Sie, dass der gleitende Durchschnitt typischerweise wie eine glattere Version der saisonbereinigten Serie aussieht und an beiden Enden kürzer ist. Ein weiteres Arbeitsblatt in derselben Excel-Datei zeigt die Anwendung des linearen exponentiellen Glättungsmodells auf die saisonbereinigten Daten beginnend in Spalte G. Über der Prognosespalte (hier in Zelle H9) wird ein Wert für die Glättungskonstante (alpha) eingetragen Zur Vereinfachung wird ihm der Bereichsname quotAlpha. quot zugewiesen (Der Name wird mit dem Befehl quotInsert / Name / Createquot zugewiesen.) Das LES-Modell wird initialisiert, indem die ersten beiden Prognosen gleich dem ersten Istwert der saisonbereinigten Serie gesetzt werden. Die hier verwendete Formel für die LES-Prognose ist die rekursive Einzelformel des Brown8217s-Modells: Diese Formel wird in der Zelle entsprechend der dritten Periode (hier Zelle H15) eingegeben und von dort nach unten kopiert. Beachten Sie, dass sich die LES-Prognose für die aktuelle Periode auf die beiden vorherigen Beobachtungen und die beiden vorhergehenden Prognosefehler sowie auf den Wert von alpha bezieht. Somit bezieht sich die Prognoseformel in Zeile 15 nur auf Daten, die in Zeile 14 und früher verfügbar waren. (Natürlich könnten wir statt der linearen exponentiellen Glättung einfach statt der linearen exponentiellen Glättung verwenden, könnten wir stattdessen die SES-Formel ersetzen. Wir könnten auch Holt8217s anstelle von Brown8217s LES-Modell verwenden, was zwei weitere Spalten von Formeln erfordern würde, um das Niveau und den Trend zu berechnen Die in der Prognose verwendet werden.) Die Fehler werden in der nächsten Spalte (hier Spalte J) durch Subtrahieren der Prognosen von den Istwerten berechnet. Der Quadratwurzel-Quadratfehler wird als Quadratwurzel der Varianz der Fehler plus dem Quadrat des Mittelwerts berechnet. (Dies ergibt sich aus der mathematischen Identität: MSE VARIANCE (Fehler) (AVERAGE (Fehler)). 2) Bei der Berechnung des Mittelwertes und der Varianz der Fehler in dieser Formel sind die ersten beiden Perioden ausgeschlossen, weil das Modell nicht tatsächlich mit der Prognose beginnt Die dritte Periode (Zeile 15 auf der Kalkulationstabelle). Der optimale Wert von alpha kann entweder durch manuelles Ändern von alpha gefunden werden, bis das minimale RMSE gefunden wird, oder Sie können das quotSolverquot verwenden, um eine genaue Minimierung durchzuführen. Der Wert von alpha, den der Solver gefunden hat, wird hier angezeigt (alpha0.471). Es ist in der Regel eine gute Idee, die Fehler des Modells (in transformierten Einheiten) zu zeichnen und ihre Autokorrelationen zu berechnen und zu zeichnen, bis zu einer Saison. Hier ist eine Zeitreihenfolge der (saisonbereinigten) Fehler: Die Fehlerautokorrelationen werden mit Hilfe der CORREL () - Funktion berechnet, um die Korrelationen der Fehler selbst mit einer oder mehreren Perioden zu berechnen - Einzelheiten sind im Kalkulationsblatt dargestellt . Hier ist ein Diagramm der Autokorrelationen der Fehler bei den ersten fünf Verzögerungen: Die Autokorrelationen bei den Verzögerungen 1 bis 3 sind sehr nahe bei Null, aber die Spitze bei Verzögerung 4 (deren Wert 0,35 ist) ist etwas mühsam Saisonale Anpassungsprozess nicht vollständig erfolgreich war. Allerdings ist es eigentlich nur marginal signifikant. 95 Signifikanzbanden zum Testen, ob Autokorrelationen signifikant von Null verschieden sind, sind etwa plus-oder-minus 2 / SQRT (n-k), wobei n die Stichprobengröße und k die Verzögerung ist. Hier ist n gleich 38 und k variiert von 1 bis 5, so daß die Quadratwurzel von - n-minus-k für alle von etwa 6 ist, und daher sind die Grenzen für das Testen der statistischen Signifikanz von Abweichungen von Null grob plus - Oder-minus 2/6 oder 0,33. Wenn Sie den Wert von alpha von Hand in diesem Excel-Modell variieren, können Sie den Effekt auf die Zeitreihen und Autokorrelationsdiagramme der Fehler sowie auf den Root-mean-squared-Fehler beobachten, der nachfolgend erläutert wird. Am Ende der Kalkulationstabelle wird die Prognoseformel quasi in die Zukunft gestartet, indem lediglich Prognosen für tatsächliche Werte an dem Punkt ausgetauscht werden, an dem die tatsächlichen Daten ablaufen - d. h. Wo die Zukunft beginnt. (Mit anderen Worten, in jeder Zelle, in der ein zukünftiger Datenwert auftreten würde, wird eine Zellreferenz eingefügt, die auf die Prognose für diese Periode hinweist.) Alle anderen Formeln werden einfach von oben nach unten kopiert: Beachten Sie, dass die Fehler für die Prognosen von Die Zukunft werden alle berechnet, um Null zu sein. Dies bedeutet nicht, dass die tatsächlichen Fehler null sein werden, sondern lediglich die Tatsache, dass wir für die Vorhersage davon ausgehen, dass die zukünftigen Daten den Prognosen im Durchschnitt entsprechen werden. Die daraus resultierenden LES-Prognosen für die saisonbereinigten Daten sehen wie folgt aus: Mit diesem für α-Periodenprognosen optimalen Wert von alpha ist der prognostizierte Trend leicht nach oben, was auf den lokalen Trend in den letzten 2 Jahren zurückzuführen ist oder so. Für andere Werte von alpha könnte eine sehr unterschiedliche Trendprojektion erhalten werden. Es ist normalerweise eine gute Idee, zu sehen, was mit der langfristigen Trendprojektion geschieht, wenn Alpha variiert wird, weil der Wert, der für kurzfristige Prognosen am besten ist, nicht notwendigerweise der beste Wert für die Vorhersage der weiter entfernten Zukunft sein wird. Dies ist beispielsweise das Ergebnis, das erhalten wird, wenn der Wert von alpha manuell auf 0,25 gesetzt wird: Der projizierte Langzeittrend ist jetzt eher negativ als positiv Mit einem kleineren Wert von alpha setzt das Modell mehr Gewicht auf ältere Daten Seine Einschätzung des aktuellen Niveaus und Tendenz und seine langfristigen Prognosen spiegeln den in den letzten 5 Jahren beobachteten Abwärtstrend wider, eher als der jüngste Aufwärtstrend. Dieses Diagramm zeigt auch deutlich, wie das Modell mit einem kleineren Wert von alpha langsamer ist, um auf quotturning pointsquot in den Daten zu antworten und daher tendiert, einen Fehler des gleichen Vorzeichens für viele Perioden in einer Reihe zu machen. Die Prognosefehler von 1-Schritt-Vorhersage sind im Mittel größer als die, die zuvor erhalten wurden (RMSE von 34,4 statt 27,4) und stark positiv autokorreliert. Die Lag-1-Autokorrelation von 0,56 übersteigt den oben berechneten Wert von 0,33 für eine statistisch signifikante Abweichung von Null deutlich. Als Alternative zum Abkürzen des Wertes von Alpha, um mehr Konservatismus in Langzeitprognosen einzuführen, wird manchmal ein Quottrend-Dämpfungsquotfaktor dem Modell hinzugefügt, um die projizierte Tendenz nach einigen Perioden abflachen zu lassen. Der letzte Schritt beim Erstellen des Prognosemodells besteht darin, die LES-Prognosen durch Multiplikation mit den entsprechenden saisonalen Indizes zu veranschaulichen. Somit sind die reseasonalisierten Prognosen in Spalte I einfach das Produkt der saisonalen Indizes in Spalte F und der saisonbereinigten LES-Prognosen in Spalte H. Es ist relativ einfach, Konfidenzintervalle für einstufige Prognosen dieses Modells zu berechnen: Erstens Berechnen Sie den RMSE (root-mean-squared Fehler, der nur die Quadratwurzel der MSE ist) und berechnen Sie dann ein Konfidenzintervall für die saisonbereinigte Prognose durch Addition und Subtraktion zweimal des RMSE. (Im Allgemeinen ist ein 95-Konfidenzintervall für eine Ein-Perioden-Vorausprognose ungefähr gleich der Punktvorhersage plus-oder-minus-zweimal der geschätzten Standardabweichung der Prognosefehler, vorausgesetzt, die Fehlerverteilung ist annähernd normal und die Stichprobengröße Ist groß genug, sagen wir, 20 oder mehr Hier ist die RMSE anstelle der Standardabweichung der Fehler die beste Schätzung der Standardabweichung der zukünftigen Prognosefehler, weil sie auch die Zufallsvariationen berücksichtigt.) Die Vertrauensgrenzen Für die saisonbereinigte Prognose werden dann reseasonalisiert. Zusammen mit der Prognose, durch Multiplikation mit den entsprechenden saisonalen Indizes. In diesem Fall ist die RMSE gleich 27,4 und die saisonbereinigte Prognose für die erste künftige Periode (Dez-93) beträgt 273,2. So dass das saisonbereinigte 95-Konfidenzintervall von 273,2-227,4 218,4 auf 273,2227,4 328,0 liegt. Das Multiplizieren dieser Limits durch Decembers saisonalen Index von 68,61. Erhalten wir niedrigere und obere Konfidenzgrenzen von 149,8 und 225,0 um die Dez-93-Punktprognose von 187,4. Die Vertrauensgrenzen für Prognosen, die länger als eine Periode vorangehen, werden sich in der Regel aufgrund der Unsicherheit über das Niveau und den Trend sowie die saisonalen Faktoren erweitern, da der Prognosehorizont zunimmt, aber es ist schwierig, sie im Allgemeinen durch analytische Methoden zu berechnen. (Die geeignete Methode zur Berechnung der Vertrauensgrenzen für die LES-Prognose ist die Verwendung der ARIMA-Theorie, aber die Unsicherheit in den saisonalen Indizes ist eine andere Angelegenheit.) Wenn Sie ein realistisches Konfidenzintervall für eine Prognose über mehrere Zeiträume wünschen, Fehler zu berücksichtigen, ist Ihre beste Wette, empirische Methoden zu verwenden: Zum Beispiel, um ein Vertrauensintervall für eine 2-Schritt-Vorausprognose zu erhalten, könnten Sie eine weitere Spalte auf der Kalkulationstabelle erstellen, um eine 2-Schritt-Voraus-Prognose für jeden Zeitraum zu berechnen Durch Booten der Ein-Schritt-Voraus-Prognose). Berechnen Sie dann die RMSE der 2-Schritt-Voraus-Prognosefehler und verwenden Sie diese als Grundlage für ein 2-stufiges Konfidenzintervall. In der Praxis wird der gleitende Durchschnitt eine gute Schätzung des Mittelwerts der Zeitreihe liefern, wenn der Mittelwert vorliegt Konstant oder langsam ändern. Im Fall eines konstanten Mittelwertes wird der grßte Wert von m die besten Schätzungen des zugrunde liegenden Mittels liefern. Ein längerer Beobachtungszeitraum wird die Effekte der Variabilität ausmachen. Der Zweck der Bereitstellung eines kleineren m ist es, die Prognose auf eine Änderung in dem zugrunde liegenden Prozess zu ermöglichen. Um zu veranschaulichen, schlagen wir einen Datensatz vor, der Änderungen im zugrundeliegenden Mittel der Zeitreihen enthält. Die Abbildung zeigt die Zeitreihen für die Darstellung zusammen mit der mittleren Nachfrage, aus der die Serie generiert wurde. Der Mittelwert beginnt als eine Konstante bei 10. Ab dem Zeitpunkt 21 erhöht er sich um eine Einheit in jeder Periode, bis er zum Zeitpunkt 30 den Wert von 20 erreicht. Dann wird er wieder konstant. Die Daten werden simuliert, indem dem Mittelwert ein Zufallsrauschen aus einer Normalverteilung mit Nullmittelwert und Standardabweichung 3 zugeführt wird. Die Ergebnisse der Simulation werden auf die nächste Ganzzahl gerundet. Die Tabelle zeigt die simulierten Beobachtungen für das Beispiel. Wenn wir die Tabelle verwenden, müssen wir bedenken, dass zu einem gegebenen Zeitpunkt nur die letzten Daten bekannt sind. Die Schätzwerte des Modellparameters, für drei verschiedene Werte von m, werden zusammen mit dem Mittelwert der Zeitreihen in der folgenden Abbildung gezeigt. Die Abbildung zeigt die gleitende durchschnittliche Schätzung des Mittelwerts zu jedem Zeitpunkt und nicht die Prognose. Die Prognosen würden die gleitenden Durchschnittskurven nach Perioden nach rechts verschieben. Eine Schlussfolgerung ergibt sich unmittelbar aus der Figur. Für alle drei Schätzungen liegt der gleitende Durchschnitt hinter dem linearen Trend, wobei die Verzögerung mit m zunimmt. Die Verzögerung ist der Abstand zwischen dem Modell und der Schätzung in der Zeitdimension. Wegen der Verzögerung unterschätzt der gleitende Durchschnitt die Beobachtungen, während der Mittelwert zunimmt. Die Vorspannung des Schätzers ist die Differenz zu einer bestimmten Zeit im Mittelwert des Modells und dem Mittelwert, der durch den gleitenden Durchschnitt vorhergesagt wird. Die Vorspannung, wenn der Mittelwert zunimmt, ist negativ. Bei einem abnehmenden Mittelwert ist die Vorspannung positiv. Die Verzögerung in der Zeit und die Bias in der Schätzung eingeführt sind Funktionen von m. Je größer der Wert von m. Desto größer ist die Größe der Verzögerung und der Vorspannung. Für eine stetig wachsende Serie mit Trend a. Die Werte der Verzögerung und der Vorspannung des Schätzers des Mittelwerts sind in den folgenden Gleichungen gegeben. Die Beispielkurven stimmen nicht mit diesen Gleichungen überein, weil das Beispielmodell nicht kontinuierlich zunimmt, sondern als Konstante beginnt, sich in einen Trend ändert und dann wieder konstant wird. Auch die Beispielkurven sind vom Rauschen betroffen. Die gleitende Durchschnittsprognose der Perioden in die Zukunft wird durch die Verschiebung der Kurven nach rechts dargestellt. Die Verzögerung und die Vorspannung nehmen proportional zu. Die nachstehenden Gleichungen zeigen die Verzögerung und die Vorspannung von Prognoseperioden in die Zukunft im Vergleich zu den Modellparametern. Diese Formeln sind wiederum für eine Zeitreihe mit einem konstanten linearen Trend. Wir sollten dieses Ergebnis nicht überraschen. Der gleitende Durchschnittsschätzer basiert auf der Annahme eines konstanten Mittelwerts, und das Beispiel hat einen linearen Trend im Mittel während eines Teils des Studienzeitraums. Da Realzeitreihen den Annahmen eines Modells nur selten gehorchen, sollten wir auf solche Ergebnisse vorbereitet sein. Wir können auch aus der Figur schließen, dass die Variabilität des Rauschens den größten Effekt für kleinere m hat. Die Schätzung ist viel volatiler für den gleitenden Durchschnitt von 5 als der gleitende Durchschnitt von 20. Wir haben die widerstrebenden Wünsche, m zu erhöhen, um den Effekt der Variabilität aufgrund des Rauschens zu verringern und m zu verringern, um die Prognose besser auf Veränderungen anzupassen Im Mittel. Der Fehler ist die Differenz zwischen den tatsächlichen Daten und dem prognostizierten Wert. Wenn die Zeitreihe wirklich ein konstanter Wert ist, ist der erwartete Wert des Fehlers Null und die Varianz des Fehlers besteht aus einem Term, der eine Funktion von und ein zweiter Term ist, der die Varianz des Rauschens ist. Der erste Term ist die Varianz des Mittelwertes mit einer Stichprobe von m Beobachtungen, vorausgesetzt, die Daten stammen aus einer Population mit einem konstanten Mittelwert. Dieser Begriff wird minimiert, indem man m so groß wie möglich macht. Ein großes m macht die Prognose auf eine Änderung der zugrunde liegenden Zeitreihen unempfänglich. Um die Prognose auf Veränderungen anzupassen, wollen wir m so klein wie möglich (1), aber dies erhöht die Fehlerabweichung. Praktische Voraussage erfordert einen Zwischenwert. Prognose mit Excel Das Prognose-Add-In implementiert die gleitenden Durchschnittsformeln. Das folgende Beispiel zeigt die Analyse des Add-In für die Beispieldaten in Spalte B. Die ersten 10 Beobachtungen sind mit -9 bis 0 indexiert. Im Vergleich zur obigen Tabelle werden die Periodenindizes um -10 verschoben. Die ersten zehn Beobachtungen liefern die Startwerte für die Schätzung und werden verwendet, um den gleitenden Durchschnitt für die Periode 0 zu berechnen. Die Spalte MA (10) zeigt die berechneten Bewegungsdurchschnitte. Der gleitende Mittelwert m ist in Zelle C3. Die Fore (1) Spalte (D) zeigt eine Prognose für einen Zeitraum in die Zukunft. Das Prognoseintervall ist in Zelle D3. Wenn das Prognoseintervall auf eine größere Zahl geändert wird, werden die Zahlen in der Spalte Vorwärts verschoben. Die Err (1) - Spalte (E) zeigt die Differenz zwischen der Beobachtung und der Prognose. Zum Beispiel ist die Beobachtung zum Zeitpunkt 1 6. Der prognostizierte Wert, der aus dem gleitenden Durchschnitt zum Zeitpunkt 0 gemacht wird, beträgt 11,1. Der Fehler ist dann -5.1. Die Standardabweichung und mittlere mittlere Abweichung (MAD) werden in den Zellen E6 bzw. E7 berechnet.


No comments:

Post a Comment