Gleitende Mittelwerte Gleitende Mittelwerte Mit herkömmlichen Datenbeständen ist der Mittelwert oft die erste und eine der nützlichsten, zusammenfassenden Statistiken, die berechnet werden. Wenn die Daten in Form einer Zeitreihe vorliegen, ist das Serienmittel eine nützliche Maßnahme, spiegelt aber nicht die dynamische Natur der Daten wider. Meanwerte, die über kurzgeschlossene Perioden berechnet werden, die entweder der aktuellen Periode vorangehen oder auf die aktuelle Periode zentriert sind, sind oft nützlicher. Weil solche Mittelwerte sich ändern oder sich bewegen, wenn sich die aktuelle Periode von der Zeit t & sub2 ;, t & sub3; usw. bewegt, werden sie als gleitende Durchschnittswerte (Mas) bezeichnet. Ein einfacher gleitender Durchschnitt ist (üblicherweise) der ungewichtete Durchschnitt von k vorherigen Werten. Ein exponentiell gewichteter gleitender Durchschnitt ist im Wesentlichen derselbe wie ein einfacher gleitender Durchschnitt, aber mit Beiträgen zum Mittelwert, der durch ihre Nähe zur aktuellen Zeit gewichtet wird. Da es keine einzige, sondern eine ganze Reihe von gleitenden Mittelwerten für eine beliebige Reihe gibt, kann der Satz von Mas selbst auf Graphen aufgetragen, als Serie analysiert und in der Modellierung und Prognose verwendet werden. Eine Reihe von Modellen kann mit gleitenden Durchschnitten konstruiert werden, und diese sind als MA-Modelle bekannt. Wenn solche Modelle mit autoregressiven (AR) Modellen kombiniert werden, sind die resultierenden zusammengesetzten Modelle als ARMA - oder ARIMA-Modelle bekannt (die I ist für integriert). Einfache gleitende Mittelwerte Da eine Zeitreihe als ein Satz von Werten betrachtet werden kann, können t 1,2,3,4, n der Mittelwert dieser Werte berechnet werden. Wenn wir annehmen, daß n ziemlich groß ist, so wählen wir eine ganze Zahl k, die viel kleiner als n ist. Können wir einen Satz von Blockdurchschnitten oder einfache Bewegungsdurchschnitte (der Ordnung k) berechnen: Jede Messung repräsentiert den Durchschnitt der Datenwerte über einem Intervall von k Beobachtungen. Man beachte, daß das erste mögliche MA der Ordnung kgt0 dasjenige für tk ist. Allgemeiner können wir den zusätzlichen Index in die obigen Ausdrücke schreiben und schreiben: Dies bedeutet, daß der geschätzte Mittelwert zum Zeitpunkt t der einfache Mittelwert des beobachteten Wertes zum Zeitpunkt t und den vorhergehenden k -1 Zeitschritten ist. Wenn Gewichte angewandt werden, die den Beitrag von Beobachtungen verringern, die weiter weg in der Zeit sind, wird der gleitende Durchschnitt als exponentiell geglättet. Gleitende Mittelwerte werden häufig als eine Form der Prognose verwendet, wobei der Schätzwert für eine Reihe zum Zeitpunkt t 1, S t1. Wird als MA für den Zeitraum bis einschließlich der Zeit t genommen. z. B. Die heutige Schätzung basiert auf einem Durchschnitt der bisherigen aufgezeichneten Werte bis einschließlich gestern (für tägliche Daten). Einfache gleitende Mittelwerte können als eine Form der Glättung gesehen werden. In dem nachfolgend dargestellten Beispiel wurde der in der Einleitung zu diesem Thema gezeigte Luftverschmutzungs-Datensatz um eine 7-tägige gleitende Linie (MA) ergänzt, die hier in Rot dargestellt ist. Wie man sehen kann, glättet die MA-Linie die Spitzen und Täler in den Daten und kann sehr hilfreich sein, um Trends zu identifizieren. Die Standard-Vorwärtsberechnungsformel bedeutet, dass die ersten k-1-Datenpunkte keinen MA-Wert haben, aber danach rechnen sich die Berechnungen auf den Enddatenpunkt in der Reihe. PM10 tägliche Mittelwerte, Greenwich Quelle: London Air Quality Network, londonair. org. uk Ein Grund für die Berechnung einfacher gleitender Mittelwerte in der beschriebenen Weise ist, dass es Werte für alle Zeitschlitze von der Zeit tk bis zur Gegenwart berechnet werden kann, und Wenn eine neue Messung für die Zeit t 1 erhalten wird, kann die MA für die Zeit t 1 zu dem bereits berechneten Satz addiert werden. Dies bietet eine einfache Vorgehensweise für dynamische Datensätze. Allerdings gibt es einige Probleme mit diesem Ansatz. Es ist vernünftig zu argumentieren, dass sich der Mittelwert der letzten 3 Perioden zum Zeitpunkt t -1, nicht zur Zeit t, befinden sollte. Und für eine MA über eine gerade Anzahl von Perioden vielleicht sollte sie sich in der Mitte zwischen zwei Zeitintervallen befinden. Eine Lösung für dieses Problem besteht darin, zentrierte MA-Berechnungen zu verwenden, bei denen der MA zum Zeitpunkt t der Mittelwert einer symmetrischen Menge von Werten um t ist. Trotz seiner offensichtlichen Verdienste wird dieser Ansatz nicht allgemein verwendet, weil er erfordert, dass Daten für zukünftige Ereignisse verfügbar sind, was möglicherweise nicht der Fall sein kann. In Fällen, in denen die Analyse vollständig aus einer bestehenden Serie besteht, kann die Verwendung von zentriertem Mas bevorzugt sein. Einfache gleitende Mittelwerte können als eine Form von Glättung, Entfernen einiger Hochfrequenzkomponenten einer Zeitreihe und Hervorhebung (aber nicht Entfernen) von Trends in einer ähnlichen Weise wie der allgemeine Begriff der digitalen Filterung betrachtet werden. Tatsächlich sind die gleitenden Mittelwerte eine Form eines linearen Filters. Es ist möglich, eine gleitende Durchschnittsberechnung auf eine Reihe anzuwenden, die bereits geglättet worden ist, d. h. Glätten oder Filtern einer bereits geglätteten Reihe. Zum Beispiel können wir mit einem gleitenden Mittelwert der Ordnung 2 es als berechnen mit Gewichten betrachten, so dass das MA bei x 2 0,5 x 1 0,5 x 2 gilt. Ebenso ist das MA bei x 3 0,5 x 2 0,5 x 3. Wenn wir Eine zweite Glättungs - oder Filterstufe anwenden, so haben wir 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3, dh die zweistufige Filterung Prozess (oder Faltung) einen variabel gewichteten symmetrischen gleitenden Durchschnitt mit Gewichten erzeugt hat. Mehrere Windungen können sehr komplexe gewichtete gleitende Durchschnitte erzeugen, von denen einige speziell in Spezialgebieten, wie etwa in Lebensversicherungsberechnungen, gefunden wurden. Bewegungsdurchschnitte können verwendet werden, um periodische Effekte zu entfernen, wenn sie mit der Länge der Periodizität als bekannt berechnet werden. Zum Beispiel können mit monatlichen Daten saisonale Schwankungen oft entfernt werden (wenn dies das Ziel ist), indem Sie eine symmetrische 12-monatigen gleitenden Durchschnitt mit allen Monaten gleichmäßig gewichtet, mit Ausnahme der ersten und letzten, die mit 1/2 gewichtet werden. Dies liegt daran, dass es 13 Monate im symmetrischen Modell (aktuelle Zeit, t / / 6 Monate). Die Gesamtzahl wird durch 12 geteilt. Ähnliche Verfahren können für jede wohldefinierte Periodizität angenommen werden. Exponentiell gewichtete Bewegungsdurchschnitte (EWMA) Mit der einfachen gleitenden Durchschnittsformel werden alle Beobachtungen gleich gewichtet. Wenn wir diese Gleichgewichte, alpha t. Würde jedes der k Gewichte gleich 1 / k sein. So dass die Summe der Gewichte würde 1, und die Formel wäre: Wir haben bereits gesehen, dass mehrere Anwendungen dieses Prozesses in die Gewichte variieren führen. Bei exponentiell gewichteten Bewegungsdurchschnitten wird der Beitrag zum Mittelwert aus mehr zeitlich entfernten Beobachtungen verringert, wodurch neuere (lokale) Ereignisse hervorgehoben werden. Im wesentlichen wird ein Glättungsparameter 0lt alpha lt1 eingeführt und die Formel überarbeitet: Eine symmetrische Version dieser Formel würde die Form haben: Wenn die Gewichte im symmetrischen Modell als die Ausdrücke der Terme der Binomialdehnung ausgewählt werden, (1/21/2) 2q. Sie summieren sich auf 1, und wenn q groß wird, nähert sich die Normalverteilung. Dies ist eine Form der Kerngewichtung, wobei das Binomial als Kernfunktion dient. Die im vorigen Teilabschnitt beschriebene zweistufige Faltung ist genau diese Anordnung, wobei q 1 die Gewichte ergibt. Bei der exponentiellen Glättung ist es notwendig, einen Satz von Gewichten zu verwenden, die auf 1 summieren und die geometrisch verkleinern. Die verwendeten Gewichte haben typischerweise die Form: Um zu zeigen, daß diese Gewichte zu 1 summieren, betrachten wir die Ausdehnung von 1 / als Folge. Wir können den Ausdruck in Klammern schreiben und erweitern, indem wir die binomische Formel (1- x) p verwenden. Wobei x (1) und p -1, was ergibt, ergibt sich daraus ein gewichtetes gleitendes Mittel der Form: Diese Summation kann als Rekursionsrelation geschrieben werden, was die Berechnung stark vereinfacht und das Problem vermeidet, dass das Gewichtungsregime Sollte strikt unendlich sein, damit die Gewichte auf 1 summieren (für kleine Werte von Alpha ist dies typischerweise nicht der Fall). Die von verschiedenen Autoren verwendete Schreibweise variiert. Einige verwenden den Buchstaben S, um anzuzeigen, daß die Formel im wesentlichen eine geglättete Variable ist, und schreiben: während die kontrolltheoretische Literatur oft Z anstelle von S für die exponentiell gewichteten oder geglätteten Werte verwendet (siehe z. B. Lucas und Saccucci, 1990, LUC1) , Und die NIST-Website für weitere Details und bearbeitete Beispiele). Die Formeln, die oben zitiert wurden, stammen aus der Arbeit von Roberts (1959, ROB1), aber Hunter (1986, HUN1) verwendet einen Ausdruck der Form, die für die Verwendung in einigen Kontrollverfahren geeigneter sein kann. Bei alpha 1 ist die mittlere Schätzung einfach ihr gemessener Wert (oder der Wert des vorherigen Datenelements). Bei 0,5 ist die Schätzung der einfache gleitende Durchschnitt der aktuellen und vorherigen Messungen. In Prognosemodellen wird der Wert S t. Wird oft als Schätzwert oder Prognosewert für die nächste Zeitperiode, dh als Schätzung für x zum Zeitpunkt t 1, verwendet. Somit haben wir: Dies zeigt, dass der Prognosewert zum Zeitpunkt t 1 eine Kombination des vorherigen exponentiell gewichteten gleitenden Durchschnitts ist Plus eine Komponente, die den gewichteten Vorhersagefehler darstellt, epsilon. Zum Zeitpunkt t. Wenn eine Zeitreihe gegeben wird und eine Prognose erforderlich ist, ist ein Wert für alpha erforderlich. Dies kann aus den vorhandenen Daten geschätzt werden, indem die Summe der quadrierten Prädiktionsfehler mit unterschiedlichen Werten von alpha für jedes t 2,3 ausgewertet wird. Wobei der erste Schätzwert der erste beobachtete Datenwert x ist. Bei Steueranwendungen ist der Wert von alpha wichtig, da er bei der Bestimmung der oberen und unteren Steuergrenzen verwendet wird und die erwartete durchschnittliche Lauflänge (ARL) beeinflusst Bevor diese Kontrollgrenzen unterbrochen werden (unter der Annahme, dass die Zeitreihe eine Menge von zufälligen, identisch verteilten unabhängigen Variablen mit gemeinsamer Varianz darstellt). Unter diesen Umständen ist die Varianz der Kontrollstatistik: (Lucas und Saccucci, 1990): Kontrollgrenzen werden gewöhnlich als feste Vielfache dieser asymptotischen Varianz festgelegt, z. B. / - das Dreifache der Standardabweichung. Wenn beispielsweise & alpha; 0,25 angenommen wird und die zu überwachenden Daten eine Normalverteilung haben, wird N (0,1), wenn sie gesteuert wird, die Steuergrenzen / - 1,134 sein, und der Prozeß wird eine oder andere Grenze in 500 erreichen Schritte im Durchschnitt. Lucas und Saccucci (1990 LUC1) leiten die ARLs für eine breite Palette von Alpha-Werten und unter verschiedenen Annahmen unter Verwendung von Markov-Chain-Prozeduren ab. Sie tabellieren die Ergebnisse, einschließlich der Bereitstellung von ARLs, wenn der Mittelwert des Kontrollprozesses um ein Vielfaches der Standardabweichung verschoben worden ist. Beispielsweise beträgt bei einer 0,5-Verschiebung mit alpha 0,25 die ARL weniger als 50 Zeitschritte. Die oben beschriebenen Ansätze werden als einzelne exponentielle Glättung bezeichnet. Da die Prozeduren einmal auf die Zeitreihe angewendet werden und dann Analysen oder Steuerprozesse auf dem resultierenden geglätteten Datensatz durchgeführt werden. Wenn der Datensatz einen Trend und / oder saisonale Komponenten enthält, kann eine zweidimensionale oder dreistufige Exponentialglättung angewandt werden, um diese Effekte zu entfernen (explizit modellieren) (siehe weiter unten im Abschnitt "Vorhersage") und das Beispiel von NIST ). CHA1 Chatfield C (1975) Die Analyse der Zeitreihen: Theorie und Praxis. Chapman und Hall, London HUN1 Hunter J S (1986) Der exponentiell gewichtete gleitende Durchschnitt. J von Qualitätstechnologie, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Exponentiell gewichtete gleitende durchschnittliche Kontrollschemata: Eigenschaften und Verbesserungen. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Kontrolltests auf der Grundlage geometrischer Bewegungsdurchschnitte. Technometrics, 1, 239-250Stata: Datenanalyse und statistische Software Nicholas J. Cox, Durham Universität, Großbritannien Christopher Baum, Boston College egen, ma () und seine Einschränkungen Statarsquos offensichtlichste Befehl für die Berechnung der gleitenden Durchschnitte ist die ma () - Funktion von Egen. Bei einem Ausdruck wird ein gleitender Durchschnitt für diesen Ausdruck erstellt. Standardmäßig wird als 3. genommen, muss ungerade sein. Allerdings kann, wie der manuelle Eintrag angibt, egen, ma () nicht mit varlist kombiniert werden:. Und aus diesem Grund ist es nicht auf Paneldaten anwendbar. In jedem Fall steht er außerhalb des Satzes von Befehlen, die speziell für Zeitreihen geschrieben werden, siehe Zeitreihen für Details. Alternative Ansätze Zur Berechnung von Bewegungsdurchschnitten für Paneldaten gibt es mindestens zwei Möglichkeiten. Beide hängen davon ab, dass der Dataset zuvor tsset wurde. Das ist sehr viel wert: nicht nur können Sie sich immer wieder spezifizieren Panel variabel und Zeit variabel, aber Stata verhält sich intelligent jede Lücken in den Daten. 1. Schreiben Sie Ihre eigene Definition unter Verwendung von Zeitreihenoperatoren wie L. und F. Geben Sie die Definition des gleitenden Durchschnitts als Argument für eine generierte Anweisung an. Wenn Sie dies tun, sind Sie natürlich nicht auf die gleich gewichteten (ungewichteten) zentrierten Bewegungsdurchschnitte beschränkt, die von egen, ma () berechnet wurden. Zum Beispiel würden gleich gewichtete Dreiphasenbewegungsdurchschnitte gegeben und einige Gewichte können leicht angegeben werden: Sie können natürlich einen Ausdruck wie log (myvar) anstelle eines Variablennamens wie myvar angeben. Ein großer Vorteil dieses Ansatzes ist, dass Stata automatisch das Richtige für Paneldaten macht: führende und nacheilende Werte werden in Panels ausgearbeitet, genauso wie Logik diktiert. Der bemerkenswerteste Nachteil ist, dass die Befehlszeile ziemlich lang werden kann, wenn der gleitende Durchschnitt mehrere Begriffe beinhaltet. Ein anderes Beispiel ist ein einseitiger gleitender Durchschnitt, der nur auf vorherigen Werten basiert. Dies könnte nützlich sein für die Erzeugung einer adaptiven Erwartung dessen, was eine Variable nur auf Informationen basieren wird: was könnte jemand prognostizieren für den aktuellen Zeitraum auf der Grundlage der letzten vier Werte, mit einem festen Gewichtungsschema (A 4-Periode Verzögerung sein könnte Besonders gebräuchlich mit vierteljährlichen Zeitreihen.) 2. Verwenden Sie egen, filter () von SSC Verwenden Sie den benutzerdefinierten egen function filter () aus dem egenmore package auf SSC. In Stata 7 (aktualisiert nach dem 14. November 2001) können Sie dieses Paket installieren, nachdem egenmore auf die Details zu filter () hingewiesen hat. Die beiden obigen Beispiele würden gerendert (In diesem Vergleich ist der generierte Ansatz vielleicht transparenter, aber wir sehen ein Beispiel des Gegenteils in einem Moment.) Die Lags sind eine Numliste. Führt zu negativen Verzögerungen: In diesem Fall erweitert sich -1/1 auf -1 0 1 oder Blei 1, lag 0, lag 1. Die Koeffizienten, eine weitere Numliste, multiplizieren die entsprechenden nacheilenden oder führenden Elemente: In diesem Fall sind diese Elemente F1.myvar Myvar und L1.myvar. Der Effekt der Normalisierungsoption besteht darin, jeden Koeffizienten durch die Summe der Koeffizienten zu skalieren, so daß coef (1 1 1) normalisiert ist, zu Koeffizienten von 1/3 1/3 1/3 äquivalent ist und coef (1 2 1) normalisiert Auf Koeffizienten von 1/4 1/2 1/4. Sie müssen nicht nur die Verzögerungen, sondern auch die Koeffizienten angeben. Da egen, ma () den gleich gewichteten Fall liefert, ist der Hauptgrund für egen, filter (), den ungleich gewichteten Fall zu unterstützen, für den Sie Koeffizienten angeben müssen. Es könnte auch gesagt werden, dass die verpflichtenden Benutzer, um Koeffizienten angeben ist ein wenig mehr Druck auf sie zu denken, welche Koeffizienten sie wollen. Die wichtigste Rechtfertigung für gleiche Gewichte ist, wir schätzen, Einfachheit, aber gleiche Gewichte haben miese Frequenzbereich Eigenschaften, um nur eine Erwägung zu erwähnen. Das dritte Beispiel oben könnte entweder von denen ist nur so kompliziert wie die Generierung Ansatz. Es gibt Fälle, in denen egen, filter () eine einfachere Formulierung ergibt als erzeugen. Wenn Sie einen neun-term-Binomialfilter suchen, der von den Klimatologen als nützlich empfunden wird, dann sieht es vielleicht weniger schrecklich aus und ist leichter zurecht zu kommen. Genau wie beim generierten Ansatz funktioniert egen, filter () ordnungsgemäß mit Panel-Daten. Tatsächlich hängt es, wie oben erwähnt, davon ab, daß der Dataset vorher tsset wurde. Eine grafische Spitze Nach der Berechnung Ihrer gleitenden Durchschnitte werden Sie wahrscheinlich einen Graphen betrachten wollen. Der benutzerdefinierte Befehl tsgraph ist schlau um Tsset-Datasets. Installieren Sie es in einem up-to-date Stata 7 von ssc inst tsgraph. Was ist mit der Teilmenge mit if Keine der obigen Beispiele verwenden, wenn Einschränkungen. In der Tat egen, ma () wird nicht zulassen, wenn angegeben werden. Gelegentlich Menschen wollen verwenden, wenn bei der Berechnung der gleitenden Durchschnitte, aber seine Verwendung ist ein wenig komplizierter als es normalerweise ist. Was würden Sie von einem gleitenden Durchschnitt erwarten? Lassen Sie uns zwei Möglichkeiten identifizieren: Schwache Interpretation: Ich möchte keine Ergebnisse für die ausgeschlossenen Beobachtungen sehen. Starke Interpretation: Ich möchte nicht, dass Sie die Werte für die ausgeschlossenen Beobachtungen verwenden. Hier ist ein konkretes Beispiel. Angenommen, infolge einer Bedingung sind die Beobachtungen 1-42 eingeschlossen, aber nicht die Beobachtungen 43 an. Aber der gleitende Durchschnitt für 42 wird unter anderem von dem Wert für die Beobachtung 43 abhängen, wenn der Mittelwert sich nach hinten und vorne erstreckt und eine Länge von mindestens 3 hat, und er wird in einigen Fällen von einigen der Beobachtungen 44 abhängen. Unsere Vermutung ist, dass die meisten Menschen für die schwache Interpretation gehen würde, aber ob das korrekt ist, egen, filter () nicht unterstützt, wenn entweder. Sie können immer ignorieren, was Sie donrsquot wollen oder sogar unerwünschte Werte auf fehlende danach mit replace setzen. Eine Notiz über fehlende Ergebnisse an den Enden der Serie Da gleitende Mittelwerte Funktionen von Lags und Leads sind, erzeugt eMe () fehlende Stellen, wo die Lags und Leads nicht existieren, am Anfang und Ende der Reihe. Eine Option nomiss zwingt die Berechnung der kürzeren, nicht beanspruchten gleitenden Mittelwerte für die Schwänze. Im Gegensatz dazu weder erzeugen noch egen, filter () macht oder erlaubt, etwas Besonderes, um fehlende Ergebnisse zu vermeiden. Wenn einer der für die Berechnung benötigten Werte fehlt, fehlt dieses Ergebnis. Es ist Aufgabe der Benutzer zu entscheiden, ob und welche Korrekturchirurgie für solche Beobachtungen erforderlich ist, vermutlich nach dem Betrachten des Datensatzes und unter Berücksichtigung aller zugrunde liegenden Wissenschaft, die gebracht werden kann.
No comments:
Post a Comment